Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 20783, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456706

ABSTRACT

We present real-world data processing on measured electron time-of-flight data via neural networks. Specifically, the use of disentangled variational autoencoders on data from a diagnostic instrument for online wavelength monitoring at the free electron laser FLASH in Hamburg. Without a-priori knowledge the network is able to find representations of single-shot FEL spectra, which have a low signal-to-noise ratio. This reveals, in a directly human-interpretable way, crucial information about the photon properties. The central photon energy and the intensity as well as very detector-specific features are identified. The network is also capable of data cleaning, i.e. denoising, as well as the removal of artefacts. In the reconstruction, this allows for identification of signatures with very low intensity which are hardly recognisable in the raw data. In this particular case, the network enhances the quality of the diagnostic analysis at FLASH. However, this unsupervised method also has the potential to improve the analysis of other similar types of spectroscopy data.


Subject(s)
Knowledge , Photons , Humans , Electrons , Light , Artifacts
2.
Sci Rep ; 12(1): 17809, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36280680

ABSTRACT

X-ray free-electron lasers (XFELs) as the world's brightest light sources provide ultrashort X-ray pulses with a duration typically in the order of femtoseconds. Recently, they have approached and entered the attosecond regime, which holds new promises for single-molecule imaging and studying nonlinear and ultrafast phenomena such as localized electron dynamics. The technological evolution of XFELs toward well-controllable light sources for precise metrology of ultrafast processes has been, however, hampered by the diagnostic capabilities for characterizing X-ray pulses at the attosecond frontier. In this regard, the spectroscopic technique of photoelectron angular streaking has successfully proven how to non-destructively retrieve the exact time-energy structure of XFEL pulses on a single-shot basis. By using artificial intelligence techniques, in particular convolutional neural networks, we here show how this technique can be leveraged from its proof-of-principle stage toward routine diagnostics even at high-repetition-rate XFELs, thus enhancing and refining their scientific accessibility in all related disciplines.

3.
Sci Adv ; 8(22): eabn6848, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35648864

ABSTRACT

Here, we use x-rays to create and probe quantum coherence in the photoionized amino acid glycine. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay and by photoelectron emission from sequential double photoionization. Sinusoidal temporal modulation of the detected signal at early times (0 to 25 fs) is observed in both measurements. Advanced ab initio many-electron simulations allow us to explain the first 25 fs of the detected coherent quantum evolution in terms of the electronic coherence. In the kinematically complete x-ray absorption measurement, we monitor its dynamics for a period of 175 fs and observe an evolving modulation that may implicate the coupling of electronic to vibronic coherence at longer time scales. Our experiment provides a direct support for the existence of long-lived electronic coherence in photoionized biomolecules.

4.
J Synchrotron Radiat ; 29(Pt 3): 755-764, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35511008

ABSTRACT

A set of electron time-of-flight spectrometers for high-resolution angle-resolved spectroscopy was developed for the Small Quantum Systems (SQS) instrument at the SASE3 soft X-ray branch of the European XFEL. The resolving power of this spectrometer design is demonstrated to exceed 10 000 (E/ΔE), using the well known Ne 1s-13p resonant Auger spectrum measured at a photon energy of 867.11 eV at a third-generation synchrotron radiation source. At the European XFEL, a width of ∼0.5 eV full width at half-maximum for a kinetic energy of 800 eV was demonstrated. It is expected that this linewidth can be reached over a broad range of kinetic energies. An array of these spectrometers, with different angular orientations, is tailored for the Atomic-like Quantum Systems endstation for high-resolution angle-resolved spectroscopy of gaseous samples.

5.
Science ; 375(6578): 285-290, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34990213

ABSTRACT

In quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10-18 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized infrared laser pulse, we created a clock to time-resolve the electron dynamics and demonstrated control of the coherent electron motion by tuning the photon energy of the x-ray pulse. Core-excited states offer a fundamental test bed for studying coherent electron dynamics in highly excited and strongly correlated matter.

6.
J Phys Chem Lett ; 12(30): 7146-7150, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34297572

ABSTRACT

The predominant reason for the damaging power of high-energy radiation is multiple ionization of a molecule, either direct or via the decay of highly excited intermediates, as, e.g., in the case of X-ray irradiation. Consequently, the molecule is irreparably damaged by the subsequent fragmentation in a Coulomb explosion. In an aqueous environment, however, it has been observed that irradiated molecules may be saved from fragmentation presumably by charge and energy dissipation mechanisms. Here, we show that the protective effect of the environment sets in even earlier than hitherto expected, namely immediately after single inner-shell ionization. By combining coincidence measurements of the fragmentation of X-ray-irradiated microsolvated pyrimidine molecules with theoretical calculations, we identify direct intermolecular electronic decay as the protective mechanism, outrunning the usually dominant Auger decay. Our results demonstrate that such processes play a key role in charge delocalization and have to be considered in investigations and models on high-energy radiation damage in realistic environments.


Subject(s)
Pyrimidines/chemistry , Photolysis , Pyrimidines/radiation effects , Water/chemistry , X-Rays
7.
Commun Chem ; 4(1): 119, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-36697819

ABSTRACT

Short-wavelength free-electron lasers with their ultrashort pulses at high intensities have originated new approaches for tracking molecular dynamics from the vista of specific sites. X-ray pump X-ray probe schemes even allow to address individual atomic constituents with a 'trigger'-event that preludes the subsequent molecular dynamics while being able to selectively probe the evolving structure with a time-delayed second X-ray pulse. Here, we use a linearly polarized X-ray photon to trigger the photolysis of a prototypical chiral molecule, namely trifluoromethyloxirane (C3H3F3O), at the fluorine K-edge at around 700 eV. The created fluorine-containing fragments are then probed by a second, circularly polarized X-ray pulse of higher photon energy in order to investigate the chemically shifted inner-shell electrons of the ionic mother-fragment for their stereochemical sensitivity. We experimentally demonstrate and theoretically support how two-color X-ray pump X-ray probe experiments with polarization control enable XFELs as tools for chiral recognition.

8.
Phys Chem Chem Phys ; 22(5): 2704-2712, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31793561

ABSTRACT

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

9.
Phys Rev Lett ; 123(21): 213001, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31809166

ABSTRACT

We report the observation of the radiative decay of singly charged noble gas ground-state ions embedded in heterogeneous van der Waals clusters. Electron-photon coincidence spectroscopy and dispersed photon spectroscopy are applied to identify the radiative charge transfer from Kr atoms to a Ne_{2}^{+} dimer, which forms after single valence photoionization of Ne atoms at the surface of a NeKr cluster. This mechanism might be a fundamental decay process of ionized systems in an environment.

10.
J Synchrotron Radiat ; 26(Pt 4): 1010-1016, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31274422

ABSTRACT

Commissioning and first operation of an angle-resolved photoelectron spectrometer for non-invasive shot-to-shot diagnostics at the European XFEL soft X-ray beamline are described. The objective with the instrument is to provide the users and operators with reliable pulse-resolved information regarding photon energy and polarization that opens up a variety of applications for novel experiments but also hardware optimization.


Subject(s)
Photoelectron Spectroscopy/instrumentation , X-Rays , Europe , Photons
11.
J Phys Chem Lett ; 10(5): 1078-1082, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30779875

ABSTRACT

Energy and charge transfer processes play an important role in many fundamental reactions in chemistry, biochemistry, and even technology. If an entity that is part of a larger system is photoexcited, its energy will dissipate, for example, by rearrangement of electron density in a large molecule or by photon emission (fluorescence). Here, we report the experimental observation of free electrons from a heterogeneous van der Waals cluster, in which some sites act as electron emitters receiving their energy efficiently from other "antenna" sites that are resonantly excited in the UV range. By complementing electron spectroscopy with fluorescence detection, we can directly observe that electron emission via this mechanism completely quenches fluorescence once the channel opens. We suggest this mechanism to be important for both quenching of fluorescence as well as resonantly enhancing free electron production in a variety of systems.

12.
Beilstein J Nanotechnol ; 9: 2968-2979, 2018.
Article in English | MEDLINE | ID: mdl-30591845

ABSTRACT

Background: The application of superparamagnetic particles as biomolecular transporters in microfluidic systems for lab-on-a-chip applications crucially depends on the ability to control their motion. One approach for magnetic-particle motion control is the superposition of static magnetic stray field landscapes (MFLs) with dynamically varying external fields. These MFLs may emerge from magnetic domains engineered both in shape and in their local anisotropies. Motion control of smaller beads does necessarily need smaller magnetic patterns, i.e., MFLs varying on smaller lateral scales. The achievable size limit of engineered magnetic domains depends on the magnetic patterning method and on the magnetic anisotropies of the material system. Smallest patterns are expected to be in the range of the domain wall width of the particular material system. To explore these limits a patterning technology is needed with a spatial resolution significantly smaller than the domain wall width. Results: We demonstrate the application of a helium ion microscope with a beam diameter of 8 nm as a mask-less method for local domain patterning of magnetic thin-film systems. For a prototypical in-plane exchange-bias system the domain wall width has been investigated as a function of the angle between unidirectional anisotropy and domain wall. By shrinking the domain size of periodic domain stripes, we analyzed the influence of domain wall overlap on the domain stability. Finally, by changing the geometry of artificial two-dimensional domains, the influence of domain wall overlap and domain wall geometry on the ultimate domain size in the chosen system was analyzed. Conclusion: The application of a helium ion microscope for magnetic patterning has been shown. It allowed for exploring the fundamental limits of domain engineering in an in-plane exchange-bias thin film as a prototypical system. For two-dimensional domains the limit depends on the domain geometry. The relative orientation between domain wall and anisotropy axes is a crucial parameter and therefore influences the achievable minimum domain size dramatically.

14.
Materials (Basel) ; 11(6)2018 May 23.
Article in English | MEDLINE | ID: mdl-29789512

ABSTRACT

The detection of a single photon is the most sensitive method for sensing of photon emission. A common technique for single photon detection uses microchannel plate arrays combined with photocathodes and position sensitive anodes. Here, we report on the combination of such detectors with grating diffraction spectrometers, constituting a low-noise wavelength resolving photon spectroscopy apparatus with versatile applicability. We recapitulate the operation principle of such detectors and present the details of the experimental set-up, which we use to investigate fundamental mechanisms in atomic and molecular systems after excitation with tuneable synchrotron radiation. Extensions for time and polarization resolved measurements are described and examples of recent applications in current research are given.

15.
Rev Sci Instrum ; 88(5): 053903, 2017 May.
Article in English | MEDLINE | ID: mdl-28571434

ABSTRACT

A new device for polarization control at the free electron laser facility FLASH1 at DESY has been commissioned for user operation. The polarizer is based on phase retardation upon reflection off metallic mirrors. Its performance is characterized in three independent measurements and confirms the theoretical predictions of efficient and broadband generation of circularly polarized radiation in the extreme ultraviolet spectral range from 35 eV to 90 eV. The degree of circular polarization reaches up to 90% while maintaining high total transmission values exceeding 30%. The simple design of the device allows straightforward alignment for user operation and rapid switching between left and right circularly polarized radiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...